Abstract

Abstract In the most recent years the asymmetric rolling (AR) attracts attention of researchers and technologists. This process can improve some technological parameters (e.g. modification of rolling torque and load, power requirements, etc.) as well as provide the possibility of grain refinement in a relatively inexpensive way. Most of the reports concerning microstructural changes produced by AR refer to high deformations imposed in highly asymmetric conditions. However, such rolling conditions are difficult to control, so there are no prospects to their quick industrial implementation. The present paper refers to relatively low deformation and low asymmetry rate, that is much more interesting for the industry. It was shown that bending of the rolled band (important disadvantage of the AR technology) can be controlled by adjusting of the amount of deformation and asymmetry. It was also shown that ca. 30% reduction in thickness during cold rolling, together with a relatively low asymmetry, reduces significantly the grain size and produces a more fragmented microstructure inside grains of the polycrystalline copper comparing to the symmetric rolling (SR). The material hardness after AR is higher than after the SR. Moreover, the crystallographic texture asymmetry, expressed by its rotation around the transverse direction, is observed in the AR material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.