Abstract

We previously demonstrated that while diabetic animals receiving long-term insulin treatment exhibited some impairment in their corticosterone response to hypoglycemia, the stress response to hypoglycemia was completely absent when these animals were subjected to recurrent hypoglycemia. In the current study, we examined potential mechanisms that may contribute to defects in the adrenocortical response to hypoglycemia in long-term insulin-treated diabetic animals exposed to antecedent hypoglycemia. Whereas insulin-treated diabetic animals exhibited a significant rise in corticotrophin-releasing hormone (CRH) mRNA levels during hypoglycemia, exposure to antecedent hypoglycemia completely abolished this response. Moreover, expression of hippocampal mineralocorticoid receptors (MR) mRNA, which normally act to suppress hypothalamo–pituitary–adrenal activity, decreased in the normal control and insulin-treated diabetic groups in response to hypoglycemia, whereas MR mRNA levels remained at baseline in animals subjected to antecedent hypoglycemia. Interestingly, hippocampal glucocorticoid receptor (GR) mRNA levels decreased in all three treatment groups following the hypoglycemic clamp. While GR mRNA levels in the paraventricular nucleus were lower in normal controls following hypoglycemia, this trend just failed to reach statistical significance in the two diabetic groups. These data suggest that (1) recurrent hypoglycemia, much like uncontrolled diabetes, has a pronounced effect on hippocampal mineralocorticoid receptor mRNA expression that may prevent it, and presumably also the stress axis, from responding properly to a subsequent bout of hypoglycemia, and (2) while long-term insulin treatment was sufficient to restore some of these responses in diabetic animals, tighter glycemic control may be necessary to see full restoration of the stress response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.