Abstract
Zou, W., Si, B., Han, X. and Jiang, H. 2012. The effect of long-term fertilization on soil water storage and water deficit in the Black Soil Zone in northeast China. Can. J. Soil Sci. 92: 439–448. The Black Soil Zone in northeast China is one of the most important areas of agricultural production in China and plays a crucial role in food supply. However, further improvement in crop yield hinges on effective management of soil water. There is a poor understanding of how different fertilization methods affect crop water use efficiency. The objective of this study was to examine the effect of different fertilization methods on soil water storage and deficit in Black soils. A long-term experiment was conducted at the National Field Research Station of Agro-ecosystems, at Hailun County, Heilongjiang province in northeastern China from 1999 to 2008. Three fertilizer treatments including no fertilizer (CK), inorganic fertilizer (NP) and inorganic fertilizer plus organic material (NPM) were tested. The results showed that soil water storage decreased in the order CK, NP, and NPM during the growing season and the differences in soil water storage in the active root zone (0–70 cm) and below the active root zone (70–130 cm) and soil water deficit were statistically significant among the three treatments. Due to the uneven temporal distribution of rainfall and crop water uptake, soil water content was very dynamic in all three treatments: The low soil water storage and resulting soil water deficit (defined as the monthly difference between potential evapotranspiration and soil available water storage) within the 0- to 70-cm soil profile were found in both June and July. Further, soil receiving NPM was more likely to have a soil water deficit, but less likely to have excessive water. A lower risk of excess water may result in deeper root penetration and increased water use at greater depth, and thus the water deficit under the NPM treatment may not be the limiting factor for crop production. Therefore, NPM seems a viable management practice for improving crop yields in the Black Soil Zone in northeast China, possibly due to higher soil organic carbon and nutrient supply and lower probability of excess water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.