Abstract

The effect of long-term stress on amphibian immunity is not well understood. We modeled a long-term endocrine stress scenario by elevating plasma corticosterone in two species of amphibians and examined effects on white blood cell differentials and innate immune activity. Plasma corticosterone was elevated in American bullfrogs (Lithobates catesbeianus) by surgically implanting corticosterone capsules and in African clawed frogs (Xenopus laevis) by immersion in corticosterone-treated water. To provide a context for our results within endogenous corticosterone fluctuations, diurnal plasma corticosterone cycles were determined. A daily low of corticosterone was observed in X. laevis at 12:00, while a significant pattern was not observed in L. catesbeianus. Elevated plasma corticosterone levels increased the ratio of peripheral neutrophils to lymphocytes, in both species, and decreased eosinophil concentrations in L. catesbeianus over a long-term period. Whole blood oxidative burst generally correlated with neutrophil concentrations, and thus was increased with corticosterone treatment, significantly in L. catesbeianus. In L. catesbeianus, an endogenous response of eosinophils and lymphocytes to implanted empty (sham) capsules was observed, but this effect was attenuated by corticosterone. Peripheral monocyte and basophil concentrations were not significantly altered by corticosterone treatment in either species. Our results show that long-term stress can alter amphibian immune parameters for extended periods and may play a role in susceptibility to disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call