Abstract
The one-dimensional dynamic response of an infinite bar composed of a linear “microelastic material” is examined. The principal physical characteristic of this constitutive model is that it accounts for the effects of long-range forces. The general theory that describes our setting, including the accompanying equation of motion, was developed independently by Kunin (Elastic Media with Microstructure I, 1982), Rogula (Nonlocal Theory of Material Media, 1982) and Silling (J. Mech. Phys. Solids 48 (2000) 175), and is called the peridynamic theory. The general initial-value problem is solved and the motion is found to be dispersive as a consequence of the long-range forces. The result converges, in the limit of short-range forces, to the classical result for a linearly elastic medium. Explicit solutions in elementary form are given in a broad class of special cases. The most striking observations arise in the Riemann-like problem corresponding to a constant initial displacement field and a piecewise constant initial velocity field. Even though, initially, the displacement field is continuous, it involves a jump discontinuity for all later times, the Lagrangian location of which remains stationary. For some materials the magnitude of the discontinuity-jump oscillates about an average value, while for others it grows monotonically, presumably fracturing the material when it exceeds some critical level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.