Abstract

A steady two-dimensional forced convective thermal boundary layer flow in a porous medium is studied. It is assumed that the solid matrix and fluid phase which comprise the porous medium are subject to local thermal non-equilibrium conditions, and therefore two heat transport equations are adopted, one for each phase. When the basic flow velocity is sufficiently high, the thermal fields may be described accurately using the boundary layer approximation, and the resulting parabolic system is analysed both analytically and numerically. Local thermal non-equilibrium effects are found to be at their strongest near the leading edge, but these decrease with distance from the leading edge and local thermal equilibrium is attained at large distances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call