Abstract

We compute the matter bispectrum in the presence of primordial local non-Gaussianity over a wide range of scales, including the very small nonlinear ones. We use the Halo Model approach, considering non-Gaussian corrections to the halo profiles, the halo mass function and the bias functions. We compare our results in the linear and mildly nonlinear scales to a large ensemble of Gaussian and non-Gaussian numerical simulations. We consider both squeezed and equilateral configurations, at redshift z = 0 and z = 1. For z = 0, the deviations between the Halo Model and the simulations are smaller than 10% in the squeezed limit, both in the Gaussian and non-Gaussian cases. The Halo Model allows to make predictions on scales much smaller than those reached by numerical simulations. For local non-Gaussian initial conditions with a parameter fNL = 100, we find an enhancement of the bispectrum in the squeezed configuration k = k3 = k2 >> k1 ∼ 0.01h−1Mpc, of ∼ 15% and ∼ 25% on scales k ∼ 1h−1Mpc, at z = 0 and z = 1 respectively. This is mainly due to the non-Gaussian corrections in the linear bias. Finally we provide a very simple expression valid for any scenario, i.e. for any choice of the halo profile, mass and bias functions, which allow for a fast evaluation of the bispectrum on squeezed configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.