Abstract
Statistical mechanics of double-stranded DNA (dsDNA) is well described by the wormlike chain model (WLC) which assumes a harmonic bending potential. Such smooth bending potential may no longer be valid for large bending angles to form small loops (< 100 bp). Instead, DNA may rely on rare structural transitions such as local melting (opening) of base pairs to lower the energetic cost. In theory, open base pairs called bubbles can increase the looping probability of short DNA molecules by a few orders of magnitude, but a robust experimental validation of this theoretical prediction is lacking. Here, we investigated the correlation between local melting probability and looping dynamics of dsDNA using single-molecule fluorescence resonance energy transfer (FRET). We designed two groups of short DNA molecules with low and high melting probabilities around their center and measured their looping and unlooping rates in equilibrium. Our data allow rigorous tests of meltable wormlike chain (MWLC) models at short length scales for setting the lower limit for the free energy of bubble formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.