Abstract

As a relatively new class of load bearing elements, 3D-woven sandwich panels (3DWSPs) are emerging in many engineering applications. Similar to other structural elements, the practical usage of the 3DWSPs requires deep understanding around their mechanical properties like elastic stiffness and failure strength. The present study investigates the effect of load concentration on one-way response of the 3DWSPs by: (1) running a comprehensive set of 64 tests to find out the influence of various interfering parameters such as loading span length, the thickness of loaded skin, the shape of loading bar, and panel’s direction, (2) thoughtful interpretation of the elastic and failure results, (3) generation of failure maps, and (4) development of reliable theoretical models for the linear elastic response and the four observed failure mechanisms of skin indentation, skin wrinkling, core shear collapse, and interpillar skin buckling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.