Abstract
The objective of this study is to discuss the effect and mechanism of lithium chloride on the rehabilitation of locomotion post spinal cord injury (SCI) by observing the effect of lithium chloride on the expression of the brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. In total, 36 Sprague-Dawley (SD) rats were randomly divided into the sham operation group (n = 12), model group (n = 12), and lithium chloride group (n = 12). The sham operation group underwent laminectomy, while for the model group and the lithium chloride group with the NYU spinal cord impactor the SCI model was established. Basso, Beattie, and Bresnahan (BBB) score was used to evaluate locomotion after administration for 1, 3, 5, and 7 days, and the tissues were gathered for Nissl staining, transmission electron microscopy, immunofluorescence, and Western blot. With a statistical difference ( P < 0.05) on the 3rd day and significant difference ( P < 0.01) on the 5th day post administration, a higher BBB score was observed in the lithium chloride group indicating that lithium chloride improved the locomotion function after SCI. A better structure and morphology of neuron were observed by Nissl staining in the lithium chloride group. Lithium chloride promoted BDNF secretion from neurons in the spinal cord anterior horn with a significant difference compared to the model group ( P < 0.01). Compared with the model group, lithium chloride significantly promoted the expression of BDNF protein and phosphorylated TrkB protein ( P < 0.05), but no difference in the expression of TrkB was detected. Lithium chloride can alleviate the locomotion function after SCI with a mechanism that it can promote BDNF secretion from neurons in the spinal cord anterior horn and phosphorylation of TrkB to upregulate the BDNF/TrkB pathway supporting survival of neurons and regeneration and remyelination of axons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.