Abstract

The water buffalo (Bubalus bubalis) is known for its unique utilization of low-quality fibrous feeds and outstanding digestion performance, highlighting its role as an animal model in studying fiber fractions degradation. Among roughage, lignin attracted wide attention in ruminant nutrition studies, which affects animal digestibility. Therefore, the present study aims to investigate the functional relation between three lignin monomeric compositions of coniferyl alcohol (G), ρ-coumaryl alcohol (H) and sinapyl alcohol (S) and ruminal fiber degradation in water buffalo. Hence, three female water buffaloes (Nili-Ravi × Mediterranean, five years old, 480 ± 20 kg) were assigned for an in vivo study by utilizing the nylon-bag method, examining eight kinds of roughage. All the experimental roughage types were analyzed for the effective degradability (ED) of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL) and hemicellulose (HC) fractions. Then, prediction models for the roughage fiber degradation were established based on the characteristics of lignin monomer content. The results showed that S, S/G and S/(G+S+H) were positively correlated with the ED of NDF, ADF, CEL and HC; H/S was negatively correlated. For the effective degradability of ADL (ADLD), S and S/(G+S+H) were positively correlated with it; H, H/G, H/S and H/(G+S+H) were negatively correlated. The model with the highest fitting degree was ADLD = 0.161 − 1.918 × H + 3.152 × S (R2 = 0.758, p < 0.01). These results indicated that the lignin monomer composition is closely related to the utilization rate of roughage fiber. S-type lignin monomer plays a vital role in the fiber degradation of roughage. The experiment found the effect of lignin monomer composition on the degradation of fiber fractions using buffalo as the experimental animal and constructed prediction models, providing a scientific basis for building a new technological method using lignin composition to evaluate buffalo roughage. Furthermore, the capacity of ADL degradation of buffalo was proved in this experiment. In order to further explore the ability of lignin degradation by the buffalo, the DNA of rumen microorganisms was extracted for sequencing. The top three composition of rumen microorganisms at the genus level were Prevotella_1, 226, Rikenellaceae_RC9_gut_group and Ruminococcaceae_UCG-011. Six strains with lignin degradation ability were screened from buffalo rumen contents. This experiment also revealed that the buffalos possess rumen microorganisms with lignin degradation potential.

Highlights

  • Lignin is a complex aromatic polymer in the cell wall, which increases with plant maturity development

  • The present study aimed to explore the functional relationship between lignin monomer composition and ruminal fiber fractions degradation in water buffalo by using different roughage sources, which may establish a novel approach for evaluating roughage’s nutritional value

  • We found that Bacteroidetes and Firmicutes are the most dominant bacteria among buffalo rumen microorganisms, and their relative abundance accounts for nearly 90%

Read more

Summary

Introduction

Lignin is a complex aromatic polymer in the cell wall, which increases with plant maturity development. It consists of phenylpropane units [1], filling the gaps between cellulose and hemicellulose to resin [2]. It is known that lignin content provides structural strength and rigidity for plant cell walls. Lignin limits microbial enzymatic access to lignocellulose, which affects roughage digestibility [4] and closely disturbs the utilization extent. When the lignin content decreases, the dry matter digestibility rate significantly increases [5] because the nature of lignin’s inhibits microbial enzymatic activity [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call