Abstract

By using the tripodal tetradentate ligand tris(2-benzimidazolylmethyl)amine (H(3)ntb), which can have several charge states depending on the number of secondary amine protons, mononuclear octahedral and dinuclear trigonal bipyramidal Fe(III) complexes were prepared. The reaction of mononuclear octahedral [Fe(III)(H(3)ntb)Cl(2)]ClO(4), 1, with 3 equiv of sec-butylamine in methanol led to the formation of mononuclear cis-dimethoxo octahedral Fe(III)(H(2)ntb)(OMe)(2), 2. One equivalent of the sec-butylamine was used to generate the monoanionic H(2)ntb(-) ligand where one of the three amines in the benzimidazolyl groups was deprotonated. The remaining 2 equiv were used to generate two methoxides that were coordinated to the octahedral Fe(III) ion in a cis fashion as demonstrated by the chlorides in 1. Reaction of 1 with excess (7 equiv) sec-butylamine generated the doubly deprotonated dianionic Hntb(2-) that stabilized the dinuclear mu-oxo Fe(III)(2)O(Hntb)(2), 3, adopting a five-coordinate trigonal bipyramidal geometry. The magnetic data for 3 are consistent with the antiferromagnetically coupled Fe(III) (S = 5/2) sites with the coupling constant J = -127 cm(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.