Abstract

ABSTRACTDifferential Scanning Calorimetry (DSC) and Debye-Scherrer X-ray diffraction have been used to characterize silicide formation in nickel/amorphous-silicon multilayer films. Two different Ni:Si layer thickness ratios were investigated, 3:11 and 1:1. Films with layer thickness ratio of 3:11 first formed Ni2Si followed by NiSi at a temperature 25°C higher. Multilayer films with 1:1 thickness ratios formed only Ni2Si. Activation energies for these reaction were determined and found to be in agreement with previous results on bilayer films. The temperature at which Ni 2Si formation was complete in the 1:1 films was found to decrease with decreasing layer thickness. Analysis of this phenomenon allowed determination of the interdiffusivity during silicide formation, also in agreement with previous results. Films with 1:1 layer thickness ratios and layer thickness of 125 Å or less were found to sometimes undergo explosive silicidation. This presumably occurs because the rate of heat generation at the reacting interfaces exceeds the rate of heat dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.