Abstract

Few-layer graphene has been widely regarded as an efficient filter for gas separation, but the effect of the layer number on the gas permeation process is still unclear. To explore the layer number effect, we perform molecular dynamics simulations to investigate the gas permeation through a nanopore within the few-layer graphene. Our numerical simulations show that the permeation constant decreases with increasing layer number, which is analyzed based on the macroscopic Kennard empirical model. The macroscopic model is in good agreement with the numerical result in the limit of large layer number, but there are obvious deviations for the medium layer number. We generalize the macroscopic model by considering the nanoscale effect from the surface morphology of the nanoscale pore, which can well describe the layer number dependence for the gas permeation constant in the full range. These results provide valuable information for the application of few-layer graphene in the gas permeation field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.