Abstract
Abstract The mean peel resistance force achieved with respect to variation in the laser power, incident spot traverse velocity and incident spot diameter between linear low density polyethylene film backed by a thin commercial adhesive coating that were bonded to a polypropylene substrate via thermal activation provided by a 27W CO 2 laser is discussed in this work. The results gathered for this work have been used to generate a novel empirical tool that predicts the CO 2 laser power required to achieve a viable adhesive bond for this material combination. This predictive tool will enable the packaging industry to achieve markedly increased financial yield, process efficiency, reduced material waste and process flexibility. A laser spot size dependent linear increase in laser line energy was necessary for this material combination, suggesting the minimal impact of thermal strain rate. Moreover a high level of repeatability around this threshold laser line energy was indicated, suggesting that laser activated adhesive bonding of such polymer films is viable. The adhesion between the material combination trialled here responded linearly to thermal load. In particular, when using the smallest diameter laser spot, it is proposed that the resulting high irradiance caused film or adhesive material damage; thus, resulting in reduced peel resistance force. The experimental work conducted indicated that the processing window of an incident CO 2 laser spot increases with respect to spot diameter, simultaneously yielding greater bond stability in the face of short-term laser variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.