Abstract

Variability in Lake Erie water levels results in variations of the fluid forces applied to the lake bed by free-surface gravity wind-waves. An increase in the bed stress may re-suspend sediment deposited years earlier. This study identifies areas of possible non-cohesive sediment mobilization in response to the forcing conditions and water levels present in Lake Erie. Observations from NOAA buoy 45005 were used to identify wave events generated by a variety of atmospheric forcing conditions. For each event, numerical predictions of significant wave height, wave period, and water level from the Great Lakes Forecasting System (GLFS) were used to characterize the wave event variability over the lake. The Shields parameter was estimated at each 2 km × 2 km grid cell with the local wave forcing as predicted by GLFS assuming an estimate of the wave-induced friction factor. In the Cleveland harbor region of the central basin, the Shields parameter was also estimated by assuming uniform wave conditions as observed by NOAA buoy 45005. The “contour of incipient motion” for both variable and uniform wave events was defined as the offshore contour where the Shields parameter exceeds the critical limit for motion. Comparisons with a radiometrically corrected image from Landsat-7 showed that the spatially varying wave events from GLFS were in qualitative agreement with the satellite observations. A sensitivity analysis of wave height, wave period, and grain size showed the contour of incipient motion to be the most sensitive to wave period. Calculations performed for record high and low water levels showed that the incipient motion of non-cohesive sediments in the relatively flat central basin to be the most sensitive to the historic hydrologic variability present in Lake Erie.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call