Abstract

Large particle size and low specific surface area are two major factors of restricting metal oxides as combustion catalyst with high performance. The construction of three-dimensional (3D) heterojunction materials with synergistic effect is conducive to enhancing the catalytic activity. In this work, LaFeO3 were prepared by a facile solvo-thermal method and post-heat treament. However, the LaFeO3 with a large particle size shows poor specific surface area, resulting in a low catalytic activity. In order to improve its catalytic activity, a 3D core/shell heterostructured LaFeO3@MnO2 composite was constructed by coupling LaFeO3 with MnO2. The core-shell structured LaFeO3@MnO2 provides a larger specific surface area and high catalytic effect on the thermal decomposition of ammonium perchlorate (AP) with a reduced decomposition temperature from 403.73 °C to 281.38 °C, an enhanced energy release from 649.6 J·g−1 to 966.5 J·g−1, and a decreased apparent activation energy from 139.05 kJ·mol−1 to 110.88 kJ·mol−1. Additionally, LaFeO3@MnO2 also shows efficient catalytic effects on the thermal decomposition of hexanitrohexaazaisowurzitane (CL-20) and cyclotetramethylenetetranitramine (HMX).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.