Abstract

Abstract Recent advances in oil and gas cementing technology allow for the modeling and prediction of both compressive and tensile stresses upon an annular cement sheath, throughout the life of a well. Given the knowledge of the type and magnitude of stresses likely to be encountered in a specific location in a wells annulus gives designers target parameters for designing the mechanical properties necessary in the set cement to be able to sustain those stresses without failing. Such a mechanical failure in a cement sheath can cause a loss of annular isolation. However, the authors feel the ability to model these stresses is only one-half of the information necessary to design cement systems for long-term zonal isolation. While some good work has been done on certain lower density cement systems in an attempt to develop fit-for-purpose designs with improved tensile and flexural strengths, the authors have found that some wells requiring higher density cement systems, also need cements with "enhanced" mechanical properties. Towards this end, the authors have conducted mechanical properties research of several relatively common cement additives. These included organic materials as well as non-organic materials. For this study, these materials were added to oilfield cements with water contents averaging from 50 to 66 % by weight of cement (bwoc). Besides the more common unconfined compressive strength tests, the samples are also subjected to tensile and/or flexural strength testing. While the API has long ago established procedures for running unconfined compressive strength tests, there are currently no API standards in place covering the testing methodology for tensile and/or flexural strengths of oilfield cements. Accordingly, the authors present not only the mechanical properties achieved with the use of the various materials tested, but also the methodology used to achieve their data. In an effort to more closely scrutinize the effect each individual material has on the mechanical properties of the set cement, each additive is examined independently. Armed with this information, design engineers should be equipped to propose cement systems that produce effective long-term zonal isolation at the induced annular stresses of their own wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.