Abstract

AbstractModifications to water temperature caused by the release of hypolimnetic water from thermally stratified reservoirs pose a major threat to the aquatic biota of lowland rivers in Australia's Murray–Darling basin. Keepit Dam is earmarked as one of several deep‐release structures in the basin causing ecologically significant temperature modification over a large length of river. This study utilized discrete and continuously monitored historical water temperature data from stream gauging stations, together with reservoir thermal profile data, to assess the impacts of Keepit Dam on the thermal regime of the Namoi River. Modifications to selected components of the river's annual temperature cycle were quantified in relation to a pre‐dam temperature regime estimated from statistical models incorporating catchment, hydrological and sample attributes. Keepit Dam has modified the thermal regime of the Namoi River. The effect was greatest immediately downstream from the dam where the annual maximum daily temperature was approximately 5.0 °C lower and occurred three weeks later than the pre‐dam condition. This change was sufficient to disrupt thermal spawning cues for selected Australian native fish species. The magnitude of disturbance progressively diminished with distance from the dam. Key aspects of the river's annual temperature cycle were largely restored to the pre‐dam condition within 100 river km downstream from the dam, which is closer than previous estimates. However, there was marked inter‐annual variation in the magnitude of thermal modification and ecological impact as a result of year to year changes in tributary flow and reservoir behaviour. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.