Abstract

Disturbed soil cores, at two bulk densities, and undisturbed soil cores were collected from two fields which had been maintained under reduced tillage management. Dry matter yield of growth chamber-grown barley in the disturbed soil cores was equal to or lower than that produced in the undisturbed cores but was unaffected by degree of soil compaction. Increase in dry matter yield in response to K or Cl fertilization was greater in disturbed than undisturbed soils. Compaction did not generally influence response to KCl fertilization. Soil disturbance did not consistently influence concentration of N, K or Cl in barley tissue. Tissue content of Zn was increased by soil disturbance in the clay loam soil and decreased by soil disturbance in the sandy loam soil. Compaction did not influence tissue content of N or Cl. Compaction did not influence K content of plants grown on the clay loam soil, which initially had high levels of plant-available K, but reduced K content of plants grown on K-deficient sandy loam soil. Increased compaction also reduced the Zn content of plants in the sandy loam soil but increased Zn content of plants in the clay loam soil. Application of KCl or CaCl2 increased Cl content of barley tissue and tended to reduce the N content of the tissue, particularly in the clay loam soil. Application of KCl or KNO3 increased K concentration in barley tissue grown on the K-deficient sandy loam soil but not on the higher K clay loam soil.Key words: Potassium, chloride, zinc, compaction, bulk density, barley

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call