Abstract

The kidneys play a major role in maintaining body homeostasis by regulating the concentration of many of the plasma constituents, and by eliminating all the metabolic wastes. These functions are mediated via two interdependent regulatory systems that govern the rate of glomerular function and tubular secretion and reabsorption. For these processes the kidneys utilize 10% of the whole body oxygen consumption1. Thus, a decrease in oxygen availability causes many abnormalities in cell physiology such as: increase in mitochondrial NADH2, ATP depletion, cell swelling, an increase in intracellular free calcium, acidosis, phospholipase and protease activation, oxidant injury, inflammatory response, a reduction in glomerular filtration rate (GFR)2, 3, inducing acute renal failure (ARF). Furthermore, reperfusion itself is known to enhance renal cellular damage by formation of reactive oxygen species4. Short periods of ischemia will allow resynthesis of ATP, whereas, prolonged ischemia may cause irreversible loss of mitochondrial function, further impairing regeneration of ATP. Therefore, the rate of cell ATP recovery is dependent on the ability of the cell to survive ischemia and also on the duration of the ischemic period3.KeywordsNitric OxideRenal Blood FlowOxygen DeliveryRenal TissueRenal IschemiaThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.