Abstract

The effects of irradiation and hyperbaric oxygenation (HBO) on the extracellular matrix of condylar cartilage after mandibular distraction were evaluated. Unilateral distraction was performed on 19 rabbits. Five study groups were included: control, low- and high-dose irradiation, and low- and high-dose irradiation groups with HBO. Additionally, four temporomandibular joints (TMJ) were used as control material. The high-dose irradiated animals were given in the TMJ 22.4 Gy/4 fractions irradiation (equivalent to 50 Gy/25 fractions). Low-dose irradiation group received a 2.2 Gy dosage. Two groups were also given preoperatively HBO 18 × 2.5ATA × 90 min. After a two-week distraction period (14 mm lengthening) and four-week consolidation period the TMJs were removed. Proteoglycan (PG) distribution of the extracellular matrix was evaluated using safranin O staining and collagen I and II using immunohistochemistry. The organization of fibrillar network was studied by polarized light microscopy. On the operated side of the control group and on the unoperated side in all, except for high-dose irradiated group, PG distribution and fibrillar network were normal appearing. In the irradiated groups, with or without HBO, the cartilaginous layer was partially or totally devoid of PG and the network structure was severely damaged. In conclusion, irradiation in conjunction with the pressure applied by distraction causes severe damage to extracellular matrix of condylar cartilage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.