Abstract

BackgroundIron deficiency (ID) and malaria co-exist in tropical regions and both contribute to high rates of anaemia in young children. It is unclear whether iron fortification combined with intermittent preventive treatment (IPT) of malaria would be an efficacious strategy for reducing anaemia in young children.MethodsA 9-month cluster-randomised, single-blinded, placebo-controlled intervention trial was carried out in children aged 12–36 months in south-central Côte d’Ivoire, an area of intense and perennial malaria transmission. The study groups were: group 1: normal diet and IPT-placebo (n = 125); group 2: consumption of porridge, an iron-fortified complementary food (CF) with optimised composition providing 2 mg iron as NaFeEDTA and 3.8 mg iron as ferrous fumarate 6 days per week (CF-FeFum) and IPT-placebo (n = 126); group 3: IPT of malaria at 3-month intervals, using sulfadoxine-pyrimethamine and amodiaquine and no dietary intervention (n = 127); group 4: both CF-FeFum and IPT (n = 124); and group 5: consumption of porridge, an iron-fortified CF with the composition currently on the Ivorian market providing 2 mg iron as NaFeEDTA and 3.8 mg iron as ferric pyrophosphate 6 days per week (CF-FePP) and IPT-placebo (n = 127). The primary outcome was haemoglobin (Hb) concentration. Linear and logistic regression mixed-effect models were used for the comparison of the five study groups, and a 2 × 2 factorial analysis was used to assess treatment interactions of CF-FeFum and IPT (study groups 1–4).ResultsAfter 9 months, the Hb concentration increased in all groups to a similar extent with no statistically significant difference between groups. In the 2 × 2 factorial analysis after 9 months, no treatment interaction was found on Hb (P = 0.89). The adjusted differences in Hb were 0.24 g/dl (95 % CI −0.10 to 0.59; P = 0.16) in children receiving IPT and −0.08 g/dl (95 % CI −0.42 to 0.26; P = 0.65) in children receiving CF-FeFum. At baseline, anaemia (Hb <11.0 g/dl) was 82.1 %. After 9 months, IPT decreased the odds of anaemia (odds ratio [OR], 0.46 [95 % CI 0.23–0.91]; P = 0.023), whereas iron-fortified CF did not (OR, 0.85 [95 % CI 0.43–1.68]; P = 0.68), although ID (plasma ferritin <30 μg/l) was decreased markedly in children receiving iron fortified CF (OR, 0.19 [95 % CI 0.09–0.40]; P < 0.001).ConclusionsIPT alone only modestly decreased anaemia, but neither IPT nor iron fortified CF significantly improved Hb concentration after 9 months. Additionally, IPT did not augment the effect of the iron fortified CF. CF fortified with highly bioavailable iron improved iron status but not Hb concentration, despite three-monthly IPT of malaria. Thus, further research is necessary to develop effective combination strategies to prevent and treat anaemia in malaria endemic regions.Trial registration: http://www.clinicaltrials.gov; identifier NCT01634945; registered on July 3, 2012.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0872-3) contains supplementary material, which is available to authorised users.

Highlights

  • Iron deficiency (ID) and malaria co-exist in tropical regions and both contribute to high rates of anaemia in young children

  • About half of the anaemic children were iron deficient and the iron fortified complementary food (CF) almost eliminated ID, but against the authors’ expectation, it did not decrease anaemia prevalence. This observation is in line with a recently published Cochrane review including anemic children living in malariaendemic regions receiving iron supplementation and intermittent preventive treatment (IPT) for a 12-week period [32]

  • The authors reported a modest effect of IPT on Hb concentration, irrespective of whether the children received supplemental iron

Read more

Summary

Introduction

Iron deficiency (ID) and malaria co-exist in tropical regions and both contribute to high rates of anaemia in young children. It is unclear whether iron fortification combined with intermittent preventive treatment (IPT) of malaria would be an efficacious strategy for reducing anaemia in young children. Anaemia in sub-Saharan Africa has many aetiologies, but iron deficiency (ID) and malaria are considered to be the major causes [1]. P. falciparum is highly endemic in rural Côte d’Ivoire [2] and is a major risk factor for anaemia in young children [3]. Iron fortification may reduce the prevalence of anaemia in children aged below 2 years [6], but its effectiveness in sub-Saharan Africa remains uncertain. IPT of malaria might improve the response to iron fortification in areas where malaria is highly endemic

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call