Abstract

Iron oxides play an important role in the transport and transformation of organic phosphorus in aquatic environments. However, the effect of different types of iron oxide on the environmental fate of organic phosphorus has remained unclear. In this study, the photodegradation of the organic phosphorus compound adenosine triphosphate (ATP) via the activity of crystalline (goethite) and amorphous (ferrihydrite) iron oxides was investigated. It was found that ATP was photodegraded by goethite, resulting in the release of dissolved inorganic phosphate under simulated sunlight irradiation. The concentration of ATP on goethite decreased by 75% after 6 h of simulated sunlight irradiation, while the concentration of ATP on ferrihydrite decreased by only 22%. ATR-FTIR spectroscopy revealed that the intensity of the peaks for the P–O and PO stretching vibrations in the goethite−ATP complex decreased significantly more after simulated sunlight irradiation than did those for the ferrihydrite treatment. Combined with the higher TOC/TOC0 values for the goethite treatment, the results indicate that a more vigorous photochemical reaction took place in the presence of goethite than with ferrihydrite. Reactive oxygen species analysis also showed that hydroxyl and superoxide anion radicals were generated when goethite was exposed to simulated sunlight irradiation, while ferrihydrite did not exhibit this ability. Overall, this study highlights that the type of iron oxide is an important factor in the transformation of organic phosphorus in aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call