Abstract
The effects of ionizing and displacive radiation on the thermal conductivity of alumina at high temperatures have been studied. The phonon scattering relaxation times for several scattering mechanisms have been used to determine the effect on the thermal conductivity. The scattering mechanisms considered are scattering by electrons excited into the conduction band, vacancies, aluminum precipitates, and voids. It is found that under irradiation conditions where the electrical conductivity and dielectric loss tangent are greatly increased there is not a significant decrease in the thermal conductivity due to phonon-electron scattering. The conditions under which the scattering due to vacancies, aluminum precipitates, and voids each produces a significant reduction in the thermal conductivity are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.