Abstract

Photosynthetic microorganisms are expected to be useful to maintain an oxygenic atmosphere and to provide biomass for astronauts in the International Space Station as well as in future long-term space flights. However, fluxes of complex ionizing radiation of various intensities and energies make space an extreme environment for the microorganisms, affecting their photosynthetic efficiency. To automatically monitor the photosynthetic Photosystem II (PSII) activity of microorganisms under space conditions an optical biosensor, which utilizes chlorophyll fluorescence as biological transduction system, was built; the PSII activity was monitored by the biosensor during balloon flights at stratospheric altitudes of about 40 km. The effect of space stress on quantum yield of PSII varied among the tested species depending on the growth light conditions at which they were exposed during the flights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.