Abstract

Cellulose nanofibrils, CNFs, show great potential in many application areas. One main aspect limiting the industrial use is the slow and energy demanding dewatering of CNF suspensions. Here we investigate the dewatering with a piston press process. Three different CNF grades were dewatered to solid contents between approx. 20 and 30%. The CNF grades varied in charge density (30, 106 and 604 µmol/g) and fibrillation degree. The chemical conditions were varied by changing salt concentration (NaCl) and pH and the dewatering rates were compared before and after these changes. For the original suspensions, a higher charge provides slower dewatering with the substantially slowest dewatering for the highest charged CNFs. However, by changing the conditions it dewatered as fast as the two lower charged CNFs, even though the salt/acid additions also improved the dewatering rate for these two CNFs. Finally, by tuning the conditions, fast dewatering could be obtained with only minor effect on film properties (strength and oxygen barrier) produced from redispersed dispersion. However, dewatering gives some reduction in viscosity of the redispersed dispersions. This may be a disadvantage if the CNF application is as e.g. rheology modifier or emulsion stabilizer.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call