Abstract
Poly(L-lactic acid) (PLLA) is currently the bioresorbable polymer of choice for vascular stents with its superior biocompatibility and mechanical properties. However, it is still difficult to enhance the radial supporting capacity of PLLA stents without increasing the strut thickness. In this study, the performance of laser-cut thin-strut stents from two groups of PLLA tubes are investigated. We considered two groups of PLLA tubes. Group 1 indicates the longitudinally stretched from original 150-μm-thick tubes, and Group 2 indicates the directly thinned from original 150-μm-thick tubes. Three stages of mechanical tests were conducted in this study, which are defined as tensile tests of dog-bone specimens, radial loading tests of tubes and radial loading tests of stents. The results suggest that Group 2 has higher radial supporting capacity than Group 1 with the same wall thickness. This work serves as a basis for manufacturing thin-strut stents with sufficient radial supporting capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.