Abstract
BACKGROUND: Stroke is the second most cause of death in the world. There are several treatments but they often end up with disabilities. Recently, cell therapy has become a new hope as an alternative treatment as it could improve the patients neurological deficits and daily living activities. Cord blood mononuclear cells (CB-MNCs) are one of the cell therapies for post-ischemic neurogenesis by intravenous or intra-arterial administration; however, it is not clear which one is better. AIM: This study aims to compare the effects of intra-arterial and intravenous administration of human CB-MNC on cortical neurogenesis of rat brain after ischemic stroke. METHODS: Twenty-four rats were divided into four groups, that is, control, middle cerebral artery obstruction (MCAO) without treatment, MCAO with intra-arterial CB-MNC injection (MCAO-IA), and MCAO with intravenous CB-MNC injection (MCAO-IV). Two weeks after injection, all rats were sacrificed, the brain was harvested, histologically process and stained with hematoxylin eosin (HE) to determine cellular and tissue morphology changes, and immunohistochemical staining, anti-NeuN antibody to determine the number of cortical neurons. The HE showed that MCAO rat brain had gliosis and shrunken cells. RESULTS: The results showed that MCAO-IA and MCAO-IV had fewer areas of gliosis and shrunken cells when compared to the MCAO group. The number of neurons also showed an increase. However, there was no difference between the MCAO-IA and MCAO-IV groups. It was concluded both of them could improve neurogenesis. CONCLUSION: CB-MNC administration can be an alternative for stroke ischemic therapy because it is proven to increase neurogenesis and reduce gliosis areas. However, there was no difference in neurogenesis in the brain tissue of mice injected with CB-MNC intravenously or intra-arterially.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Open Access Macedonian Journal of Medical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.