Abstract

Intravenous lipid emulsion (ILE) has been widely used as an effective antidote in both veterinary and human medicine for the treatment of acute intoxications caused by drugs and pesticides with high lipid solubility. This study was conducted to investigate the effect of ILE co-administration on the kinetic dispositions of ivermectin (IVM) and carprofen (CRP) following intravenous bolus administration at subtoxic doses in rabbits.Twenty-four male New Zealand rabbits weighing 2.78 ± 0.2kg were used in this study. Rabbits were divided into four groups (Group 1: IVM and Group 2: IVM + ILE or Group 3: CRP and Group 4: CRP + ILE), each group consisting of 6 animals. In the IVM study, Group 1 received IVM (0.6mg/kg) alone while Group 2 received IVM (0.6mg/kg) and ILE (2.5ml/kg). In the CRP study, Group 3 received CRP (12mg/kg) alone while Group 4 received CRP (12mg/kg) and ILE (2.5ml/kg). In both drug groups, ILE was administered 3 times as an i.v. bolus at the 10th min and repeated 4th and 8th h after the drug administration. Blood samples were collected from the auricular vein at various times after drug administration. The drug concentrations in plasma samples were determined by high-pressure liquid chromatography. Kinetic parameters were calculated using a non-compartmental model for both CRP and IVM.The C0 and area under the concentration-time curve from zero up to ∞ (AUC0-∞) values were significantly greater with ILE co-administration (2136ng/ml and 360.84ng.d/ml) compared to the IVM alone (1340.63ng/ml and 206ng.d/ml), respectively. Moreover, the volume of distribution (Vdss) and clearance (Cl) of IVM were reduced by approximately 42% and 46% with ILE co-administration compared to IVM alone resulting in a reduction of the distribution and slower elimination, respectively. Similar differences in C0, and Vdss values were also observed in CRP with ILE co-administration compared to CRP alone. ILE co-administration changed significantly the kinetic profile of both IVM and CRP in rabbits, supporting the lipid sink theory in which highly lipid-soluble compounds are absorbed into the lipid phase of plasma from peripheral organs such as the heart and brain affected by the acute toxicity of the compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.