Abstract

This paper investigated the influence of interparticle forces on the quality of fluidization in a magnetically stabilized fluidized bed (MSFB), where we can “artificially” create interparticle forces (Fattr) of any magnitude by applying an external magnetic field to ferromagnetic particles. A theoretical model was proposed which predicts the transition point from a homogeneous to a heterogeneous fluidization as a function of the magnitude of the interparticle force and other physical characteristics of both particles and fluids that are usually observed in fluidizationρp, ρf,μ, dp, e). The concept of the elastic wave velocity, Ue, and the continuity wave velocity, Ue, was introduced. In particular, the interparticle force manipulated by an externally applied magnetic field was taken into account in addition to a general consideration of a conventional fluidized bed. Bubbles form in a bed when the continuity wave velocity becomes faster than the elastic wave velocity. The simulation demonstrated the proposed model could predict the transition point of fluidization regime with reasonable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.