Abstract

Abstract— Crack growth fatigue tests were carried out on 2024‐T3 specimens. Constant‐amplitude loading was periodically interrupted by 10 overload cycles. Intermediate heat treatments (T4) were applied to remove the residual stress in the crack tip zone and the crack closure wake behind the crack tip. Retardation effects induced by crack closure due to the previous load history were fully erased by the heat treatments. Overload effects were easily introduced again by new overload cycles afterwards. Crack growth rate results and fractographic observations indicate that primary crack tip plastic deformation (in virgin material) is more effective for crack extension than secondary plastic deformation in an existing plastic zone. This conclusion is significant for cycle‐by‐cycle crack growth prediction models for variable‐amplitude loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.