Abstract

The chemokine interleukin-8 (IL-8, CXCL8) plays an important role in inflammatory processes and consecutive wound healing. It recruits primarily neutrophils to infection sites and stimulates their degranulation and phagocytosis in effector cells. IL-8 binds glycosaminoglycans (GAGs), a class of complex linear anionic polysaccharides often organized into diversely sulfated micro-domains, that enriches the protein concentration locally and so facilitate the formation of stable concentration gradients. In this study, we applied experimental and computational techniques to investigate the binding of wild type and truncated IL-8 variants to natural and chemically modified GAGs to gain further insight into the IL-8/GAG interaction. Circular dichroism spectroscopy of IL-8 variants did not reveal major structural changes upon GAG binding. Heparin affinity chromatography clearly demonstrates that gradual truncation of the C-terminal helix leads to decreasing affinities. Similarly, surface plasmon resonance indicates participation of both IL-8 termini in GAG binding, which strength is dependent on GAG sulfation degree. Molecular modeling suggests that C-terminal truncation of IL-8 weakens the interaction with GAGs by an alteration of IL-8 GAG binding site. Our study provides more detailed understanding of the IL-8/GAG interaction and contributes to the data of potential use for the development of biomedical implications in tissue regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.