Abstract

The effects of interlayers of molybdenum and copper on the strength of alumina ceramic and 1Cr18Ni9Ti stainless steel bonding with Ag57Cu38Ti5 filler metal were investigated. The interfacial morphologies were observed and analysed by scanning electron microscopy and energy dispersive X-ray (EDX) analysis, respectively. The joint strength was examined by shear tests. When using a molybdenum interlayer, the joint strength could be greatly improved because molybdenum not only reduced the interfacial residual stress, but also did not affect the interfacial reaction between the ceramic and the filler metal, and the maximum value was obtained when it was about 0.1 mm thick. When using copper as an interlayer, the joint strength was not increased but decreased, because copper reduced the activity of titanium in the filler metal, resulting in an insufficient interfacial reaction between the ceramic and the filler metal and the formation of poor interfacial adhesion. Therefore, in selecting an interlayer metal to reduce or avoid interfacial residual stress in joining ceramics to metals, in which the interfacial reaction of ceramic and filler metal is important to the joints, the interaction of interlayer metal and filler metal must be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.