Abstract
The formation of bainitic ferrite and that of grain boundary ferrite in low alloy steels have been two of the most important and interesting research topics in the field of solid state ferrous phase transformation for several decades, and various aspects of these two transformations have been discussed extensively in the literature. Recently, a so-called Gibbs energy balance (GEB) model was proposed by the authors to evaluate alloying element effects on the growth of bainitic ferrite and grain boundary ferrite. The model predicts a growth mode transition from paraequilibrium, negligible partitioning to partitioning during the isothermal formation of bainitic ferrite and grain boundary ferrite. Transformation stasis and bay phenomenon are well explained by the GEB model and both of them are found to be due to alloying element diffusion at the interface. This overview gives a summary of the authors’ recent progress in the understanding of the growth of bainitic ferrite and grain boundary ferrite, with particular focus on the growth mode transition, the transformation stasis phenomenon and the bay phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.