Abstract
The interaction of naphthothiophene, phenanthrene and anthracene ring systems, which have amide and ester side chains with cationic groups (synthesized from the aromatic acid chlorides and appropriate amines and alcohols), with calf thymus DNA has been investigated by using viscometric titrations, spectrophotometric binding experiments and 1H-, 31P- and 17O-NMR methods. The viscosity and NMR experiments suggest that all of these compounds bind to DNA by intercalation. These experiments and spectrophotometric binding studies, however, indicate that there is considerable variation in the interaction of these compounds with DNA. These variations can all be explained by the geometry of the ring systems, the position of protons adjacent to the side chains, and the relative sizes of the amide and ester side chains. With the naphthothiophene ester and amide, for example, the planar amide cannot rotate into the plane of the naphthothiophene ring whereas the smaller planar ester can. With this ring system the ester has a significantly higher binding constant than the amide derivative. Additional binding studies with poly[d(A-T) 2] and poly[d(G-C) 2] have shown that all of these compounds bind more strongly to the A-T- than the G-C-containing polymer. Since the ester compounds do not have hydrogen bond donating groups proximate to the aromatic ring, these results suggest a model for the A-T specificity of these compounds that involves a solvent-mediated hydrogen bond between the C-2 carbonyl of thymine and the carbonyl group of the intercalators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.