Abstract
The contribution of the total splanchnic tissue (TSP; portal-drained viscera (PDV) plus liver) to whole-body protein metabolism was estimated in relation to intake (0.6, 1.0 and 1.6 x maintenance requirements), in six multicatheterized growing beef steers used in a double 3 x 3 Latin square design. At the end of each 21 d experimental period, [1-13C]leucine was infused into a jugular vein (1.05 mmol/h for 5 h, preceded by a priming dose of 1.05 mmol). Arterial, portal and hepatic blood samples were collected hourly during the infusion. The increment in TSP leucine irreversible loss rate (ILR) observed with increasing intake reached significance (P < 0.10) only for PDV, while whole-body ILR increased markedly (P < 0.001) with intake. The relative contribution of TSP to whole-body leucine ILR averaged 44% (25% from PDV and 19% from the liver). Although these proportions were not affected by intake, on an incremental basis more than 70% of the increase of whole-body leucine ILR between the 0.6 and 1.0 x maintenance originated from the changes in TSP ILR, while the corresponding value was below 13% between 1.0 and 1.6 x maintenance. Total whole-body leucine oxidation and fractional oxidation increased (P < 0.05) with intake. Protein retention increased with intake (P < 0.01), as a result of a greater increase in protein synthesis compared with protein degradation. Protein breakdown had a major impact on protein turnover as 65% of the protein synthesized was degraded when intake varied from 1.0 to 1.6 x maintenance. Net leucine portal absorption increased (P < 0.001) with intake and represented 1, 16 and 23% of whole body leucine ILR, for 0.6, 1.0 and 1.6 x maintenance, respectively. Although leucine oxidation was not a major component of whole body ILR (9.3-19.9%), it represented 69% of the net available leucine (portal absorption) even at 1.6 x maintenance. The lower relative contribution of the TSP to whole-body leucine ILR at higher intake indicates the proportional increase in the metabolic activity of peripheral tissues as the animals moved into positive protein balance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.