Abstract

The aim of this in vitro study was to evaluate by spectrophotometry the influence of the incremental technique and progressive light curing in the microleakage of Class V cavities. Forty samples were prepared with class V cylindrical cavities on the buccal root surface of bovine incisive teeth and filled with composite resin (Z250). The samples were divided into four groups: I: cavity was bulk filled and the composite was light cured for 40 seconds; Group II: cavity was bulk filled and a 'soft-start" polymerization was used; Group III: cavity was filled with the incremental technique in two coats and light cured for 40 seconds; Group IV: cavity was filled with the incremental technique in two coats and light cured with "soft-start" polymerization. After the restoration, the specimens were thermally stressed for 3,000 cycles in bath at 5 +/- 2 degrees C and 55 +/- 2 degrees C, protected with nail enamel, colored with 2% methylene blue and cut into sections. These sections were triturated and the dye was recovered with PA ethanol and the supernatant was evaluated. The data were submitted to ANOVA and the results showed the following averages: bulk filled and conventional photopolymerization (I) 0.06075 microg/ml; bulk filled and progressive photopolymerization (II) 0.04030 microg/ml; incremental insertion and conventional photopolymerization (III) 0.04648 microg/ml; incremental insertion and progressive photopolymerization (IV) 0.04339 microg/ml. No significant statistic differences were observed among the mean values. The Degulux "soft-start" equipment probably emits too high initial light intensity to promote progressive photopolymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.