Abstract

The tunable second harmonic generation (SHG) enhancement factor of gold-dielectric-gold three-layered nanoshells has been theoretically studied using the theory of quasi-static electrodynamics and plasmon hybridization. Because of the local surface plasmon resonance (LSPR)-induced local field effect, the SHG response corresponding to both fundamental frequency and second harmonic has been greatly enhanced. By changing the geometry parameters and local dielectric environment of the three-layered nanostructure, the intensity and shift of the SHG factor peaks could be fine tuned. As the radius of the inner gold sphere is increased, both the fundamental and the second harmonic SHG peaks from the anti-symmetric coupling between the outer bonding shell plasmon and the inner sphere plasmon decrease, whereas the SHG peaks from the symmetric coupling between the outer shell and the inner sphere get intense. These radius-dependent intensity changes of the SHG peaks also depend on the dielectric constant of the separate layer and outer surrounding. Thus, the number of SHG peak could be tuned from two to four. Furthermore, the wavelength gaps between the SHG peaks corresponding to anti-symmetric and symmetric coupling could be greatly reduced by increasing the thickness of the outer gold shell. Therefore, the nonmonotonous intensity change could be observed because of the switching of the SHG peaks. The corresponding physical origin has been illuminated by analyzing the plasmon hybridization and the polarization fields in the nanostructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call