Abstract

Highly pathogenic avian influenza is of major concern for the poultry industry, as the virus can spread rapidly in and between flocks, causing high mortality and severe economic losses. The aim of this study was to determine the probability of infection and to determine dose-dependent virus transmission (direct transmission) for various inoculation doses.Two transmission experiments with pair-wise housed layer type chickens were performed, in which one bird per pair was inoculated with an HPAI H5N1 virus and the other contact-exposed. Various inoculation doses were used to determine the susceptibility (ID50), and possible relation between ID50, and infectiousness, expressed as the amount of virus shedding and the probability of contact birds becoming infected.The infectious H5N1 dose (CID50) in this study was an estimated 102.5 egg infectious dose (EID50). Increasing the dose increased the probability of infection but survival from infection was independent of dose. In addition, increasing the dose decreased the mean latent period in the inoculated chickens significantly. This could be important for determining the time of onset of infection in a flock and thus allowing more accurate identification of the source of infection. Moreover, the amount of virus shed in trachea and cloaca by the inoculated chickens in the time between inoculation and contact infection, also differed between the various dose groups. Despite differences in latent period and virus shedding, the transmission rate parameter β and reproduction ratio R0 did not differ significantly between the various dose groups. This implies that in this experiment the amount of virus shedding is not a measure to predict transmission or the infectiousness of chickens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.