Abstract

Abstract The effect of initial structures of Mg/Cu super-laminates on hydrogen absorption/desorption properties was investigated experimentally. Mg/Cu super-laminates were prepared by a repetitive fold and roll method using a conventional two-high roll mill. Three types of specimens were prepared by changing rolling reduction in cold rolling. Each of them had a fine, medium, coarse microstructure, respectively. Hydrogen absorption/desorption properties were measured with HP-DSC and a Sieverts’ type instrument. Microstructures were observed with SEM. Two types of MgCu 2 forms, 3D-network and layered forms, were observed after hydrogenation under the conditions of 573 K, 86.4 ks and 3.3 MPa of H 2 , respectively. This implies that Mg/Cu super-laminates can be hydrogenated by two kinds of processes. The dominant process depends on the initial structures of Mg/Cu super-laminates. Repetitive hydrogenation/dehydrogenation tests using HP-DSC indicate that, even after 20 cycles, the initial microstructures of Mg/Cu super-laminates can affect their hydrogen absorption/desorption properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call