Abstract

In this paper, the effects of initial electrons generation approaches on nanosecond pulsed breakdown characteristics are analyzed. Based on the numerical simulations with a 3D PIC-MCC model, the impacts of field-enhancement factor and initial electron concentration on nanosecond pulsed breakdown characteristics are investigated. Three types of switches are designed and subjected to testing under pulse voltages with rise times of 40, 70, and 120ns, respectively. The results can be summarized as follows. First, the field-enhancement factor and initial electron concentration have significant influences on the development of the discharge channel. Second, the cathode-grooved self-triggered switch exhibits lower breakdown time delay jitter than the hemispherical self-breakdown switch at low pressure, while the differences in jitter between the two switches become negligible at high pressure. Third, the cathode-grooved self-triggered switch shows a lower breakdown time delay jitter compared to the pre-ionization self-triggered switch for pulse voltages with rise times of 40 and 70ns. Conversely, this trend reverses for pulse voltage with a rise time of 120ns. Finally, the breakdown time delay jitter for both the cathode-grooved self-triggered switch and the pre-ionization self-triggered switch has been reduced, and both switches are suitable for different operating requirements and conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.