Abstract

The purpose of this study was to evaluate the ability of indolinic and quinolinic nitroxide radicals to protect trout (Salmo irideus) erythrocytes against oxidative stress. By using laurdan as a fluorescence probe, it was observed that the nitroxides inhibited the shift towards a gel phase of liposomes prepared with phospholipids extracted from trout erythrocyte membranes prior to the hemolytic event. In addition, the presence of 100 μM nitroxides in these liposomes protected the latter against lipid peroxidation determined by monitoring conjugated diene formation. However, the short chain analogue of the indolinic nitroxide and the quinolinic nitroxide had a negative effect on trout hemolysis, contrary to what has already been observed in previous studies on human RBCs (red blood cells). The half-time (t1/2) of the hemolytic process was 174 ± 4.02 min for the former and 184 ± 4.30 min for the latter compared to the control, 283 ± 5.05 min. Furthermore, the nitroxides remarkably increased the autoxidation rate of both trout and human hemoglobin to met-Hb. Even though protection at the membrane level is conferred by the nitroxides during the early stages of lipid peroxidation, their antioxidative ability might be overwhelmed at a later stage by other mechanisms such as the increased autoxidation of hemoglobin in the presence of the nitroxides, thus giving a possible explanation for the early induction of hemolysis induced by the nitroxides. The superoxide scavenging ability of all the nitroxides used was also evaluated through chemiluminescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.