Abstract

The microstructural evolution of magnetron sputtered Ni-based multilayers with different individual layer thicknesses h is investigated. The average grain size of multilayers and formation of chemical ordered Ni3Al phase are dependent on h in annealed Ni-based multilayer system which are disclosed by X-ray diffraction and transmission electron microscopy. Transformation of chemical ordering in the annealed multilayers is facilitated by large grains with lower density of grain boundaries when h ≥ 40 nm. On the contrary, when h < 40 nm, the retained disordered FCC Ni(Al) phase in the annealed Ni-based multilayers is attributed to the twin interface. The ordering mechanism can be explained by interface-controlled formation and migration of vacancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call