Abstract

Vegetatively propagated warm-season turfgrasses are established with methods that rely on large quantities of propagation material and subsequent plant growth support. The precision seeding adopted for some seed propagated crops controls the depth and spacing at which seeds are placed in the soil. Sprigs that are reduced in length could potentially be suitable for existing machinery, and precision planting could enhance the efficiency of use of the propagation material. The aim of the present study was to carry out a preliminary screening on products known to act as plant growth regulators to explore their potential use for controlling stolon development and elongation of ‘Patriot’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) grown in pots for propagation purposes. Trinexapac-ethyl (TE), chlormequat chloride (CM), paclobutrazol (PB), propiconazole (PPC), diquat (DQ), flazasulfuron (FS), glyphosate (GP), ethephon (EP), and gibberellic acid (GA) were applied to pot-grown ‘Patriot’ hybrid bermudagrass turf in eight different application rates, ranging for each product from the minimum expected effective rate to a potentially harmful rate. Of the tested treatments, TE applied at 2.0 kg·ha−1 and PB applied at 1.0 kg·ha−1 reduced stolon and internode length without causing a reduction in the stolon number or turf quality. PPC was also effective in reducing stolon length, but the effect on internode length was not statistically significant. Stolon length was unaffected by CM, while DQ and GP induced stolon elongation. FS, EP, and GA affected stolon length without a consistent relation between stolon length and application rate. The chemical suppression of stolon elongation in pot-grown ‘Patriot’ hybrid bermudagrass can contribute to controlling sprig size for use with precision seeding machinery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call