Abstract

The accidental spillage of flammable liquids on in-service ships and offshore installations may lead to pool fires, which are likely to spread over a particularly large area in large compartments under ship motion, resulting in extensive damage. However, the effect of the spreading extent of liquid fuel due to inclined ship motion on pool fire consequences has not been considered in the existing literature. Thus, in this study, fuel discharge experiments were conducted to investigate the spreading behaviour under different substrate inclination angles and discharge rates. The experimental results were analysed to derive closed-form expressions to predict the spreading extent of liquid fuel in large compartments. Additionally, the effects of surface inclination on fire consequences were investigated using the Fire Dynamics Simulator in terms of the heat release rate. The findings can provide guidance for effective fire safety design and establishing a realistic fire modelling methodology for ships and offshore installations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.