Abstract

CuO/SiO 2 catalysts with varying amounts of copper were prepard using meso- and microporous silica supports at pH > 10 and pH = 4.5. Structural and textural changes were followed using X-ray diffraction, TG and DTA techniques. Impregnation for periods > 10 days at high pH produces crystalline catalysts with two distinct peaks at d-spacings of 2.33 and 2.03 Å resulting from a surface silicate which is structurally stable up to 800°C. At copper concentrations > 5% CuO also forms. Catalysts prepared at pH = 4.5 are amorphous to X-rays in spite of the presence of CuO which may either be < 50 Å or from a surface solid solution. The copper ammine complex, if adsorbed on mesoporous silica, attains its maximum coordination number as [Cu(NH 3) 4(H 2O) 2] 2+, whereas on microporous silica it loses the two water molecules as a result of pore restrictions. The surface complex releases its coordinated ammonia exothermally in the temperature range 200–400°C, whereas chemisorbed ammonia is evolved endothermally at ∼280°C. Ligand water is evolved at <200°C. An exotherm at ∼545°C is observed for all catalysts, resulting form the shrinkage of the solid/void matrix which disappears upon aging. Increase of copper content to 22.7% at high pH lowered the temperature of constant weight attainment from 1000°C for the pure silica to 750°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call