Abstract

Thermal conductivity of carbon nanotubes depends on various factors. The simulation of heat transport in armchair single-walled carbon nanotube by direct nonequilibrium molecular dynamics (NEMD) method employing Tersoff–Brenner potential indicates that, thermal conductivity decreases with increase in temperature difference between two ends of the tube. Increasing the imposed temperature differential along the tube axis, leads to domination of Umklapp scattering and impacts the heat transport. The applied temperature difference does not influence the behavior of thermal conductivity vs. tube length, diameter and temperature, but changes its value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call