Abstract

Thrombus formation is the major problem associated with biomaterials for blood contact medical devices. The immobilization of inhibitors to thrombin, a serine protease that plays a central role on the coagulation system, on the surface of biomaterials should be a good strategy to avoid blood clotting and increase their hemocompatibility. The aim of this work is the design of a nanostructured surface with capacity to adsorb and inactivate thrombin. The pentapeptide sequence d-Phenylalanine–Proline–Arginine–Proline–Glycine (fPRPG), that was described as a thrombin inhibitor, was immobilized onto tetra(ethylene glycol) terminated self-assembled monolayers (EG4-SAMs). Surface containing different amounts of fPRPG were prepared using different concentrations of N,N′-Carbonyldiimidazole (CDI) during immobilization. The efficiency of fPRPG immobilization was followed using ellipsometry, contact angle measurements, Infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS). Thrombin adsorption was quantified using radiolabelled thrombin and its activity in solution and after adsorption on the developed surfaces was assessed using a chromogenic assay. It was found that, although the immobilization of fPRPG on to EG4-SAMs does not increase its selectivity to thrombin, the activity of the adsorbed thrombin was inhibited in a peptide concentration dependent way. We concluded that SAMs with fPRPG immobilized in high amounts can be used as thrombin-inhibitor surfaces, which is a good step on the development of new surfaces for blood contact devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call