Abstract
Solid state optical properties of fluorescent materials are important for many optical and electronic photonic devices such as organic light emitting diodes, frequency down-converters or luminescent solar concentrators. Perylene diimides (PDIs) represent one of the most popular organic semiconductors which find application in those phonic device applications. In this study, photophysical properties of two dibrominated PDI (DiBrPDIs), one of which contains a branched alkyl chain (2-ethylhexyl, 2-EH) and the other has an aromatic substituent (diisopropylphenyl, DIA) at the imide positions are comparatively studied. Besides their absorption and photoluminescence, lifetime and photoluminescence quantum yield (PLQY), photoinduced absorption properties (PIA) were also examined by fs-transient absorption spectroscopy. Due to their the same π conjugated system, DiBrPDI-DIA and DiBrPDI-2EH exhibited identical absorption and photoluminescence (PL) spectra in solution phase (λabs:527 nm and λPL:552 nm). However, in their film phases which were prepared at the same conditions, DiBrPDI-DIA (λPL-DIA:596 nm; PLQY:73.4%) presented a shorter PL wavelength with a higher PLQY than that of DiBrPDI-2EH (λPL-2EH:649 nm; PLQY:36.7%). 3-D investigations performed by using Chem3D pro software addressed the higher intermolecular distance between the perylene rings induced by the bulky DIA groups, as the main reason of this difference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.